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Abstract. For finite values of the parameter β and in the presence of small structural asymmetry and
inhomogeneity of the junctions parameters, the two-junction interferometer model can be described by
means of a single non-linear differential equation in such a way that a ratchet potential for SQUID’s
can be deduced. The resulting dynamical equation, derived for first-order corrections with respect to a
symmetric and homogeneous model with β = 0, presents an additional second-harmonic term and a cosine
term in the expression for the effective current-phase relation. For opportune values of the perturbation
parameters a ratchet potential with pre-definite characteristics can be obtained.

PACS. 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects – 85.25.Dq
Superconducting quantum interference devices (SQUIDs)

The question on ratchet potentials in superconducting
quantum interference devices (SQUID’s) was first ad-
dressed by Zapata et al. [1]. The authors studied ratchet-
like structures of the potential, written for β = 0, for
SQUID’s with three identical junctions, two in one branch
and one in the other. In order to break spatial symme-
try in a SQUID, one can also consider a two-junction in-
terferometer circuital model with finite parameter β and
with inhomogeneity of the energy coupling of the two junc-
tions [2,3]. In this case, however, it is not generally pos-
sible to adopt an effective single-junction description of
the system by which a one-dimensional potential can be
deduced. Nevertheless, for small finite values of the pa-
rameter β and for small structural asymmetries and inho-
mogeneity in the junctions parameters, a single non-linear
first-order ordinary differential equation can still be writ-
ten to describe the d.c. SQUID behaviour. This result is
obtained by a first-order perturbation analysis, taking the
parameter β, the structural deformation and the quan-
tities describing inhomogeneity in the junctions as per-
turbation parameters. It will be shown that this reduced
two-junction interferometer model shows additional terms
in the effective current phase relation (CPR) of the device,
namely, a second-harmonic term due to finiteness of β and
a cosine term related to inhomogeneity ε of the energy
coupling of the two junctions. It is noted that the critical
current of the device, calculated up to first order in the
parameters β and ε, however, is not affected by perturba-
tions, except at fields values giving a geometric external
flux Φex equal to a half integer multiple of the elementary
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flux quantum Φ0. In this last case a first order correction
in β and ε appears. Finally, for opportune values of the
externally applied flux Φex and of the two relevant param-
eters, a ratchet potential with some characteristic features
can be displayed.

We start by describing the dynamics of the gauge-
invariant superconducting phase differences, ϕ1 and ϕ2,
across the two junctions by means of the Resistively
Shunted Junction (RSJ) model [4,5]. Let us assume that
the resistive parameters and the maximum Josephson cur-
rents of the junctions and the d.c. SQUID branch induc-
tances can be written as follows:

R1 = (1 + δ) R, R2 = (1 − δ) R, (1a)
IJ1 = (1 + ε) IJ , IJ2 = (1 − ε) IJ , (1b)
L1 = (1 + λ)L, L2 = (1 − λ)L, (1c)

where δ, ε and λ describe the relative deviations of the
model parameters from the corresponding average val-
ues R, IJ , and L. In addition, we assume that β = LIJ

Φ0

is itself a perturbation parameter. By writing down the
constitutive model equations, we recall that the flux Φ
threading the superconducting loop is given by the sum
of the external flux Φex and the induced flux, so that:

Φ = Φex + L1I1 − L2I2, (2)

where I1 and I2 are the two branch currents. Moreover,
the flux Φ is linked to the gauge-invariant superconducting
phase differences through the fluxoid quantization relation

2π

Φ0
Φ + ϕ1 − ϕ2 = 2πn, (3)
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where n is an integer. In this way, the branch currents are
related to ϕ1 and ϕ2 by the following expressions:

I1 =
1
2

[
(1 − λ) IB − Φ0

2πL
(ϕ1 − ϕ2) − Φex

L

]
, (4a)

I2 =
1
2

[
(1 + λ) IB +

Φ0

2πL
(ϕ1 − ϕ2) +

Φex

L

]
, (4b)

where we have taken n = 0. By now defining the following
normalized quantities

i1 =
I1

IJ
, i2 =

I2

IJ
, iB =

IB

IJ
,

Ψex =
Φex

Φ0
, τ =

2πRIJ

Φ0
t, (5)

and by means of the RSJ model, we can finally write the
dynamical equations for the variables ϕ1 and ϕ2

1
1 + δ

dϕ1

dτ
+ (1 + ε) sin ϕ1 +

ϕ1 − ϕ2

4πβ
=

1
2

[
(1 − λ) iB − Ψex

β

]
, (6a)

1
1 − δ

dϕ2

dτ
+ (1 − ε) sin ϕ2 − ϕ1 − ϕ2

4πβ
=

1
2

[
(1 + λ) iB +

Ψex

β

]
. (6b)

The above coupled non-linear first-order ordinary differ-
ential equations represent a rather complete model for de-
scribing the SQUID response, recalling, however, that the
present analysis does not take into account noise effects,
which will be taken into account only at a later stage.

Let us now introduce the following new variables: ϕA =
ϕ1+ϕ2

2 and Ψ = ϕ2−ϕ1
2π , which represent the average phase

difference and the flux number Φ
Φ0

, respectively. In terms of
these new variables, the dynamical equations are written
as follows:

dϕA

dτ
+ cos (πΨ) sinϕA − (δ + ε) sin (πΨ) cosϕA

− δ

2β
Ψ =

iB
2

− δ

2β
Ψex, (7a)

π
dΨ

dτ
+ sin (πΨ) cosϕA − (δ + ε) cos (πΨ) sin ϕA

+
Ψ

2β
= (λ − δ)

iB
2

+
Ψex

2β
. (7b)

As said before, for a symmetric and homogeneous SQUID
with β = 0, the above set of equations reduces to the
following

dϕA

dτ
+ cos (πΨex) sinϕA =

iB
2

, (8)

since, in this case, Ψ = Ψex and all other perturbation
parameters are null. Therefore, on the basis of this result,
we can assume that there exists a perturbed solution of
the set of equations (7a-b) of the form

Ψ (τ) = Ψex + βΨβ (τ) + δΨδ (τ) + εΨε (τ) + λΨλ (τ) . (9)

By substituting equation (9) into equation (7b) and by
equating to zero the coefficients of the parameters β, δ, ε,
and λ, we get the following expression for Ψ (τ):

Ψ (τ) = Ψex − 2β sin (πΨex) cosϕA. (10)

Substituting now the above expression in equation (7a)
we have:

dϕA

dτ
+ cos (πΨex) sin ϕA + πβ sin2 (πΨex) sin 2ϕA

− ε sin (πΨex) cosϕA =
iB
2

, (11)

which represents a reduced two-junction interferometer
model. In equation (11) we notice the appearance of
two additional terms in the effective CPR. The first is
a second-harmonic sine term, the second a cosine term
in ϕA.

It is not difficult to show, by a rather standard anal-
ysis, that, for Ψex �= 2k+1

2 , k integer, the normalized crit-
ical current of the device is still given by the usual ex-
pression ic = 2 |cos (πΨex)|. However, for Ψex = 2k+1

2 , k
being an integer, the same analysis carried out for ε = 0,
gives ic = 2πβ; for β = 0, on the other hand, one has
ic = 2 |ε|. Therefore, according to the present analysis,
the zero-th order model of d.c. SQUID’s (Eq. (8)) is able
to capture the basic features of the complete model, rely-
ing exclusively on the dynamics of the variable ϕA. How-
ever, with a first order analysis the dynamical properties
of the model arising from the time-variation of the vari-
able Ψcan be approximately taken into account with little
effort. Moreover, by the resulting first-order model, one
can argue that second order corrections in the perturba-
tion parameters play an important role in d.c. SQUID
models, since first-order corrections are present only for
Ψex = 2k+1

2 , k integer.
We now turn to analyze the ratchet-like potential aris-

ing from this model. Setting x = ϕA, we write equa-
tion (11) in the following form:

dx

dτ
= −dU

dx
+

iB
2

, (12)

where

U (x) = − cos (πΨex) cosx − πβ

2
sin2 (πΨex) cos 2x

− ε sin (πΨex) sinx + const., (13)

is the potential. In Figure 1 we report this potential as
a function of the variable x (the average superconducting
phase difference) for β = 0.1, ε = 0.25 and Ψex = 0.35.
We notice a ratchet-like structure of the potential similar
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Fig. 1. Ratchet-like potential U (x) (full line) arising from
the proposed model and calculated for β = 0.1, ε = 0.25 and
Ψex = 0.35. Unperturbed potential (dashed line) for a d.c.
SQUID (β = 0, ε = 0, Ψex = 0.35).

to that reported in reference [1], this time given not by
the presence of two junctions in a branch, but rather by
a combination of two perturbation effects in the system:
a finite β value and a slight inhomogeneity in the junc-
tion superconducting coupling energy. Finally notice that
the bias current term can be taken as an oscillatory func-
tion and that an additive forcing term simulating thermal
noise in the system can be added on the right hand side of
equation (12), in order to complete the analogy with the
model system in reference [1].

In the present work we have proven that a two-junction
interferometer model can be reduced to only one non-
linear ordinary differential equation even in the presence of
structural asymmetry and inhomogeneity in the junctions

parameters and for non-null values of β. This reduction
comes about from the notion of the unperturbed solution
to the problem and from the definition of a solution for
the flux number Ψ depending on the perturbation param-
eters β, δ, ε, and λ. We have seen that a first-order per-
turbation analysis provides us with a non-linear ordinary
differential equation, where only the parameters β and ε
appear. In the effective CPR of the device a second-
harmonic additional sine term and a cosine term are
present. These additional terms do not affect the value
of the critical current of the device to first order in the
perturbation parameters, except for field values giving a
geometric applied flux equal to half-integer multiples of
the elementary flux quantum, i.e. for Ψex = 2k+1

2 , k in-
teger. For these particular values of Ψex a first order cor-
rection to the critical current value is found. Finally, by
writing the dynamical equation in terms of an effective po-
tential U (x), x being the average superconducting phase
differences of the junctions, a ratchet-like structure for this
potential can be found.
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